基于投影微立体光刻的3D打印技术及其应用

3D打印前沿
2020
06/12
09:36
分享
评论
来源: IJEM,《极端制造》2020年第2期文章,
作者葛锜、李志琴、王兆龙、Kavin Kowsari、张旺、何向楠、周建林、Nicholas X Fang

导读
投影微立体光刻(Projection Micro Stereolithography – PμSL)是一种基于面投影光固化原理的高精度(最高可达0.6微米)增材制造(3D打印)技术。该技术可以用于制造具有跨尺度与多材料特性的高精度复杂三维结构,在力学超材料、光学器件、4D打印、仿生材料及生物医学等领域具有广阔的应用前景。南方科技大学、深圳摩方材科技有限公司、湖南大学、麻省理工学院等单位的葛锜、李志琴、王兆龙、周建林、Nicholas X Fang等作者在《极端制造》期刊(International Journal of Extreme Manufacturing, IJEM)上发表《基于投影微立体光刻的3D打印技术及其应用》综述,系统介绍了投影微立体光刻3D打印技术的研究背景、最新进展及未来展望。

研究背景
增材制造,又称3D打印,是一种以数字模型文件为基础,将部件离散成二维图形或者路径,通过逐层叠加的方式构造三维物体的快速成型技术。对比于传统制造方法,3D打印因具有制造高精度复杂三维结构、节省材料、方便快捷等优点,已被应用到航空航天、生物医疗、电子、汽车等国民经济领域。自被发明以来,3D打印发展出了各种不同的技术,包括熔融沉积成型(FDM)、墨水直写(DIW)、喷墨(Inkjet)、立体光刻(SLA)、选区激光烧结/熔融(SLS/SLM)、双光子(TPP),以及基于数字光处理(DLP)的连续液体界面制造(CLIP)、大面积快速打印(HARP)、投影微立体光刻技术(PμSL)等。对比于其他3D打印技术,投影微立体光刻技术因其可同时实现高分辨率与大幅面3D打印(图1),被应用于前沿领域的复杂三维结构制造,并产生了一系列具有影响力的科研成果。南方科技大学葛锜副教授、湖南大学王兆龙助理教授与麻省理工学院Fang教授团队联合深圳摩方材科技有限公司针对投影微立体光刻3D打印技术在最近所做的相关代表性工作逐一地进行了详细介绍。


图1 不同3D打印技术的打印精度与幅面范围


最新进展
投影微立体光刻是一种通过将构成三维模型的二维离散图案投影到光敏树脂表面,激发局部光固化反应的方式,逐层叠加成型三维结构的3D打印技术。通过对光路系统、光源以及打印工艺的优化,最高打印精度可达到0.6微米。面投影微立体光刻因其能够快速一体化成型高精度、跨尺度、多材料复杂三维结构,在力学超材料、光学器件、4D打印、仿生材料以及生物医药方面应用广泛。深圳摩方科技有限公司将原有投影微立体光刻3D打印技术进行发展与升级(图2a),并成功地将其转化为工业级3D打印装备,实现了稳定的超高精度-大幅面3D打印(精度:2微米,幅面:50毫米×50毫米;精度:10微米精度,幅面:94毫米×52毫米幅面),用于力学超材料、生物医疗器件、微力学器件及精密结构件等工业应用(图2b-j)。


图2 投影微立体光刻3D技术及其相关工业级应用。(a)高精度-大幅面投影微立体光刻3D打印技术原理;(b)-(j)工业级应用典型案例。


在实现跨尺度、多材料3D打印方面,采用面投影与图形扫描技术相结合的方法实现了跨尺度3D打印(图3a),采用吹气辅助投影微立体光刻法(图3b)与流体控制法(图3c)实现了多材料三维结构的快速打印。


图3 跨尺度、多材料3D打印。(a)面投影与图形扫描结合实现跨尺度3D打印;(b)吹气辅助多材料3D打印;(c)流体控制辅助多材料3D打印。


在实现力学超材料方面,通过投影微立体光刻3D打印技术一次成型以拉压变形占主导的八隅体桁架结构超轻-超硬力学超材料(图4a),通过多材料投影微立体光刻3D打印技术一次成型由两种不同刚度和热膨胀系数材料构成的负热膨胀系数超材料(图4b)。


图4 力学超材料。(a)超轻-超硬力学超材料;(b)负热膨胀系数超材料。


在光学器件打印方面,采用面投影立体光刻灰度曝光与表面浸润相结合的方法,实现光学镜头的3D打印(图5a),以及振动辅助与灰度曝光相结合的方法,实现表面纳米级光滑度的微透镜阵列3D打印(图5b)。


图5 光学器件。(a)灰度曝光与表面浸润相结合实现光学镜头3D打印;(b)振动辅助与灰度曝光结合实现微透镜阵列3D打印。


在4D打印方面,通过开发形状记忆光敏树脂,实现了大变形4D打印(图6a)、多材料4D打印(图6b)、自修4D打印(图6c),4D打印超材料结构(图6d)与4D打印吸能结构(图6e)等案例。


图6 4D打印。(a)大变形4D打印;(b)多材料4D打印;(c)自修4D打印;(d)4D打印超材料结构;(e)4D打印吸能结构。


未来展望
尽管面投影微立体光刻3D打印技术在近年来取得了快速的发展,但仍面临着如海量的图片数据传输与存储、多材料体素打印精确控制、高精度陶瓷打印等问题,亟待解决。

作者简介

葛锜博士,南方科技大学机械与能源工程系长聘副教授。长期从事面投影微立体光刻3D打印技术研究,主要研究领域为4D打印、多功能3D打印、软物质力学、软体机器人、柔性电子等。


王兆龙博士,湖南大学机械与运载工程学院助理教授,长期从事微立体光刻3D打印,光学超材料及微流与热控理论及技术研究,先后参与包括重点国际(地区)合作研究项目及国家重点研发计划在内的多项国家自然科学基金和科技部重点研发项目。目前承担湖南省优秀青年基金及广东省重点领域研发计划等多项科研项目。

Nicholas X. Fang博士,麻省理工学院机械系教授,长期从事包括微立体光刻3D打印技术在内的微纳技术研究,研究领域包括纳米光学、声学超材料、微纳制造、软物质等。


上一篇:研究人员模仿自然界进行快速、多彩的3D打印
下一篇:美国研究人员用3D打印制造一氧化碳探测器
回复

使用道具 举报

推动3D打印

关注南极熊

通知

联系QQ/微信9:00-16:00

392908259

南极熊3D打印网

致力于推动3D打印产业发展

Copyright © 2024 南极熊 By 3D打印 ( 京ICP备14042416号-1 ) 京公网安备11010802043351
快速回复 返回列表 返回顶部