姓名:汪焰恩
学历:博士研究生毕业
性别:男
学位:博士
学院:机电学院
职称:教授
电子邮箱:wangyanen@nwpu.edu.cn
工作经历
1998.07~2000.07 健力宝 (西安) 华昆塑料包装股份有限公司, 工程师
2003.04~2004.03 西安交大博通资讯股份有限公司, 软件工程师
2008.04~2010.05 西北工业大学, 机电学院, 工业工程系, 博士后
2010.06~2015.04 西北工业大学, 机电学院, 工业工程系, 副教授
2015.04~至今 西北工业大学, 机电学院, 工业工程系, 教授
2020.10~2021.11 西北工业大学, 研究生院,副院长
2021.11~至今 西北工业大学, 机电学院,副院长
教育教学
1、 国家精品在线开放课程(2019)、国家级一流本科课程(2020)——《3D打印技术与应用》课程负责人;
2、 陕西省学位与研究生教育学会研究生教育成果 一等奖(2/8),2023;
2、 高等教育(研究生)国家级教学成果奖 一等奖 (10/12),2022;
3、 陕西省教学成果特等奖(8/10),2021年;
4、《3D打印技术与应用》教材(主编),高等教育出版社,2022年;
5、《3D打印技术与应用数字课程》(主编,高等教育出版社,2021) ;
6、 教育部第三批“全国工程硕士专业学位研究生教育在线课程建设项目”(2017)——《3D打印技术及应用: 解密3D打印》(负责人);
7、 陕西省专业学位研究生教学案例(增材制造技术在定制化人体骨骼应用案例设计),2021年;
8、 陕西高校创新创业教育课程(2018)——《3D打印创新与实践》(负责人),获评“飞鲨杯”中国研究生未来飞行器创新大赛优秀指导教师(2021)、第十一届陕西省“挑战杯”优秀指导教师 (2022)、西北工业大学“优秀双创导师”(2021);
9、 西北工业大学新工科建设典型案例(搭建“三资源三平台”实践教学体系,提升本科创新创业实践教学成果),2021年;
10、西北工业大学教学成果二等奖(强化双创能力、提升专业素质——机械电子工程专业人才培养体系构建与实践),2019年;
科学研究
一、主要研究方向:
1、陶瓷复合材料设计与精准制造(3D打印);
2、增材制造装备与医用机器人;
3、个性化定制与规模化生产智能制造理论与技术;
二、科学研究成效:
1、先后主持各类科研项目三十余项,主持国家重点研发计划项目1项(担任首席),国家重点研发计划课题2项,国家自然科学基金项目3 项,军口国家级项目1项,国际合作项目2项,陕西省重点研发计划6项和省发改委重大项目1项。
2、在中国科学、机械工程学报、J. Manuf. Syst., Energ. Convers. Manage.,Mater.& Design,BDM,Ceramics Int.等国内外顶级学报发表学术论文发表学术论文100余篇,出版学术专著《生物多孔支架三维快速成形工艺数值分析》(科学出版社,2015)。
3、获得授权发明专利24项,2022年成功转化 19 项发明专利作价 1200 万,西工大资产经营公司入股西安博恩生物科技有限公司。
学术成果
一、出版专著与教材:
汪焰恩、张卫红、罗卓荆 编《3D打印技术与应用》,高等教育出版社,2023
汪焰恩著《生物多孔支架三维快速成形工艺数值分析》,科学出版社,2015
二、发表的部分代表性论文:
[1] Chen X, Wang Y*, Zhang S, et al. 3D printing of graphene oxide/carbon nanotubes hydrogel circuits for multifunctional fire alarm and protection[J]. Polymer Testing, 2023, 119: 107905.(IF:4.93)
[2] Bao C, Wang Y*, Mushtaq R T, et al. Preparation, characterization, and curing kinetics of elevated and cryogenic temperature-resistant epoxy resin composites[J]. Polymer Testing, 2022, 116: 107783.(IF:4.93)
[3] Ahmed A, Wang Y*, Azam A, et al. Design and analysis of the bulbous-bottomed oscillating resonant buoys for an optimal point absorber wave energy converter[J]. Ocean Engineering, 2022, 263: 112443. (IF:4.37)
[4] Li X, Wang Y*, Zhang B, et al. The design and evaluation of bionic porous bone scaffolds in fluid flow characteristics and mechanical properties[J]. Computer Methods and Programs in Biomedicine, 2022, 225: 107059. (IF:7.03)
[5] Zhang J, Wang Y*, Wei Q, et al. A 3D printable, highly stretchable, self-healing hydrogel-based sensor based on polyvinyl alcohol/sodium tetraborate/sodium alginate for human motion monitoring[J]. International Journal of Biological Macromolecules, 2022, 219: 1216-1226. (IF:8.03)
[6] Li M, Sun D, Zhang J, et al. Application and development of 3D bioprinting in cartilage tissue engineering[J]. Biomaterials Science, 2022, 10(19): 5430-5458.(通讯作者,IF:7.59)
[7] Wang Y, Wang Y*, Wei Q, et al. Light-responsive shape memory polymer composites[J]. European Polymer Journal, 2022, 173: 111314. (IF:5.55)
[8] Wei Q, Yang R, Sun D, et al. Design and evaluation of sodium alginate/polyvinyl alcohol blend hydrogel for 3D bioprinting cartilage scaffold: molecular dynamics simulation and experimental method[J]. Journal of Materials Research and Technology-Jmr&t, 2022, 17: 66-78. (通讯作者,IF:6.27)
[9] Liu M, Wang Y*, Zhang S, et al. Success Factors of Additive Manufactured Root Analogue Implants[J]. ACS Biomaterials Science & Engineering, 2022, 8(2): 360-378. (IF:5.40)
[10] Ahmed A, Azam A, Wang Y*, et al. Additively manufactured nano-mechanical energy harvesting systems: advancements, potential applications, challenges and future perspectives[J]. Nano Convergence, 2021, 8(1): 37. (IF:10.04)
[11] Wang Y*, Guo Y, Wei Q, et al. Current researches on design and manufacture of biopolymer-based osteochondral biomimetic scaffolds[J]. Bio-Design and Manufacturing, 2021, 4(3): 541-567. (IF:5.89)
[12] Wang Y*, Ahmed A, Azam A, et al. Applications of additive manufacturing (AM) in sustainable energy generation and battle against COVID-19 pandemic: The knowledge evolution of 3D printing[J]. Journal of Manufacturing Systems, 2021, 60: 709-733. (IF:9.50)
[13] Chai W, Wei Q, Yang M, et al. The printability of three water based polymeric binders and their effects on the properties of 3D printed hydroxyapatite bone scaffold[J]. Ceramics International, 2020, 46(5): 6663-6671. (通讯作者,IF:5.53)
[14] Wei Q, Cai X, Guo Y, et al. Atomic-scale and experimental investigation on the micro-structures and mechanical properties of PLA blending with CMC for additive manufacturing[J]. Materials & Design, 2019, 183: 108158. (通讯作者,IF:9.42)
[15] Wei Q, Wang G, Lei M, et al. Multi-scale investigation on the phase miscibility of polylactic acid/o-carboxymethyl chitosan blends[J]. Polymer, 2019, 176: 159-167. (通讯作者,IF:4.43)
[16] Saroia J, Yanen W*, Wei Q, et al. A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective[J]. Bio-Design and Manufacturing, 2018, 1(4): 265-279. (IF:5.89)
[17] Ji K, Wang Y*, Wei Q, et al. Application of 3D printing technology in bone tissue engineering[J]. Bio-Design and Manufacturing, 2018, 1(3): 203-210. (IF:5.89)
[18] Wei Q, Wang Y*, Chai W, et al. Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds[J]. Ceramics International, 2017, 43(16): 13702-13709. (IF:5.53)
[19] Wei Q, Zhang Y, Wang Y*, et al. Measurement and modeling of the effect of composition ratios on the properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) membranes[J]. Materials & Design, 2016, 103: 249-258. (IF:9.42)
[20] Wei Q, Wang Y*, Chai W, et al. Effects of composition ratio on the properties of poly(vinyl alcohol)/poly(acrylic acid) blend membrane: A molecular dynamics simulation study[J]. Materials & Design, 2016, 89: 848-855. (IF:9.42)
[21] 汪焰恩*,李欣培,杨明明,魏庆华,李川川,魏生民,个性化三维打印仿生骨骼术前诊断模型,中国科学:信息科学,2015 (45) 235-247
[22] 汪焰恩*,魏庆华,杨明明,魏生民,羟基磷灰石/α-氰基丙烯酸正丁酯相互作用及力学性能的分子动力学计算,材料研究学报, 2014 (30) 49-53 (EI收录)
[23] 汪焰恩*,李鹏林,杨明明,魏生民,快速成形中PAN基碳纤维/HA力学性能模拟研究,机械工程学报, 2013 (49) 7-11 (EI收录)
主页:https://teacher.nwpu.edu.cn/wangyanen.html
|
|